研究成果

原著論文(2003年以降)

  1. Zhang H, Ishii K, Shubata T, Ishii S, Hirano M, Lu Z, Takamura R, Kitano Ss, Miyachi H, Kageyama R, Itakura E, Kobayashi T (2024) Fluctuation of lysosomal protein degradation in neural stem cells of the postnatal mouse brain. Development. 2024 Feb 15;151(4):dev202231.
  2. Park SH, Lee SE, Jeon JH, Lee JH, Itakura E, Chang S, Choi WH, Lee MJ (2023) Formation of aggresomes with hydrogel-like characteristics by proteasome inhibition. Biochim Biophys Acta Gene Regul Mech. 2023 Jun 1866(2):194932.
  3. Chiba M, Yanagawa M, Oyama Y, Harada S, Nemoto T, Matsuura A, Itakura E (2023) A novel autophagy inhibitor, bTBT, disturbs autophagosome formation. Autophagy Rep. 2023 Apr 6;2(1):2194620.
  4. Tomihari AKiyota MMatsuura AItakura E. (2023) Alpha 2-macroglobulin acts as a clearance factor in the lysosomal degradation of extracellular misfolded proteins. Sci Rep. 2023 Mar 28;13(1):4680.
  5. Ishii S, Chino H, Ode KL, Kurikawa Y, Ueda HR, Matsuura A, Mizushima N, Itakura E. (2023) CCPG1 recognizes endoplasmic reticulum luminal proteins for selective ER-phagy. Mol Biol Cell. 2023 Apr 1;34(4):ar29.
  6. Oya KMatsuura A. (2022) Haploinsufficiency of the sex-determining genes at MATα restricts genome expansion in Saccharomyces cerevisiaeiScience 2022 Aug 19; 25(8), 104783.
  7. Date Y, Matsuura A, Itakura E. (2022) Disruption of actin dynamics induces autophagy of the eukaryotic chaperonin TRiC/CCT. Cell Death Discov. 2022 Jan 25;8(1):37.
  8. Tomihari A*, Chiba M*, Matsuura A, Itakura E. (2021) Protocol for quantification of the lysosomal degradation of extracellular proteins into mammalian cells. Star protocols, 2(4):100975 (*These authors contributed equally)
  9. Uesugi R, Ishii S, Matsuura A, Itakura E. (2021) Labeling and Measuring Stressed Mitochondria Using a PINK1-Based Ratiometric Fluorescent Sensor. J Biol Chem. 297(5):101279
  10. Pan Y, Liu Y, Fujii R, Farooq U, Cheng L, Matsuura A, Qi J, Xiang L. (2021) Ehretiquinone from Onosma bracteatum wall exhibits antiaging effect on yeasts and mammals through antioxidative stress and autophagy induction. Oxid. Med. Cell. Longev. 2021: 5469849
  11. Tachibana H, Morioka T, Daino K, Shang Y, Ogawa M, Fujita M, Matsuura A, Nogawa H, Shimada Y, Kakinuma S. (2020) Early induction and increased risk of precursor B-cell neoplasms after exposure of infant or young-adult mice to ionizing radiation. J. Rad. Res. 61: 648-656
  12. Liu Q, Cheng L, Matsuura A, Xiang L, Qi J. (2020) Gentiopicroside, a secoiridoid glycoside from Gentiana rigescens Franch, extends the lifespan of yeast via inducing mitophagy and antioxidative stress. Oxid. Med. Cell. Longev. 2020: 9125752
  13. Itakura E, Chiba M, Murata T, Matsuura A. (2020) Heparan sulfate is a clearance receptor for aberrant extracellular proteins. J Cell Biol. 219: e201911126
  14. Otsubo K, Maeyashiki C, Nibe Y, Tamura A, Aonuma E, Matsuda H, Kobayashi M, Onizawa M, Nemoto Y, Nagaishi T, Okamoto R, Tsuchiya K, Nakamura T, Torii S, Itakura E, Watanabe M, Oshima S. (2020) Receptor-Interacting Protein Kinase 3 (RIPK3) inhibits autophagic flux during necroptosis in intestinal epithelial cells. FEBS Lett. 594: 1586-1594
  15. Ishii S, Matsuura A, Itakura E. (2019) Identification of a factor controlling lysosomal homeostasis using a novel lysosomal trafficking probe. Sci. Rep. 9: 11635
  16. Miura A, Matsuura A. (2019) Phosphatase-dependent fluctuations in DNA-damage checkpoint activation at partially defective telomeres. Biochem. Biophys. Res. Commun. 516: 133-137
  17. Miura A, Itakura E, Matsuura A. (2019) Reversible DNA damage checkpoint activation at the presenescent stage in telomerase-deficient cells of Saccharomyces cerevisiae. Genes Cells 24: 546-558
  18. Ueda S, Ozaki R, Kaneko A, Akizuki R, Katsuta H, Miura A, Matsuura A, Ushimaru T. (2019) TORC1, Tel1/Mec1, and Mpk1 regulate autophagy induction after DNA damage in budding yeast. Cellular Signaling 62: 109344
  19. Lin Y, Kotakeyama Y, Li J, Pan Y, Matsuura A, Ohya Y, Yoshida M, Xiang L, Qi J. (2019) Cucurbitacin B exerts antiaging effects in yeast by regulating autophagy and oxidative stress. Oxid. Med. Cell. Longev. 2019: 4517091
  20. Takahashi K, Itakura E, Takano K, Endo, T. (2019) DA-Raf, a dominant-negative regulator of the Ras–ERK pathway, is essential for skeletal myocyte differentiation including myoblast fusion and apoptosis. Exp. Cell Res. 376: 168–180 
  21. Baba M, Tomonaga S, Suzuki M, Maeda G, Takeda E, Matsuura A, Kamada Y, Baba N. (2019) A nuclear membrane-derived structure associated with Atg8 is involved in the sequestration of selective cargo, the Cvt complex, during autophagosome formation in yeast. Autophagy 15: 423-437 
  22. Takeda E, Matsuura A. (2018) A substrate localization model for the selective regulation of TORC1 downstream pathways. Commun. Integr. Biol. 11: e1475830 
  23. Tatsumi T, Takayama K, Ishii S, Yamamoto A, Hara T, Minami N, Miyasaka N, Kubota T, Matsuura A, Itakura E*, Tsukamoto S*. (2018) Forced lipophagy reveals that lipid droplets are required for early embryonic development in mouse. Development 145: dev161893 (*co-corresponding authors) 
  24. Yamagishi Y, Oya K, Matsuura A, Abe H. (2018) Use of CK-548 and CK-869 as Arp2/3 complex inhibitors directly suppresses microtubule assembly both in vitro and in vivo. Biochem. Biophys. Res. Commun. 496: 834-839
  25. Takeda E, Jin N, Itakura E, Kira S, Kamada Y, Weisman LS, Noda T, Matsuura A. (2018) Vacuole-mediated selective regulation of TORC1-Sch9 signaling following oxidative stress. Mol. Biol. Cell 29: 510-522
  26. Itakura E*, Chen C, de Bono M*. (2017) Purification of FLAG-tagged secreted proteins from mammalian cells. Bio Protoc. 7: e2430 (*co-corresponding authors)
  27. Takayama K, Matsuura A, Itakura E. (2017) Dissection of ubiquitinated protein degradation by basal autophagy. FEBS Lett. 591: 1199-1211 (Selected as Editor's Choice)
  28. Chen C, Itakura E, Nelson GM, Sheng M, Laurent P, Fenk LA, Butcher RA, Hedge RS, de Bono M. (2017) IL-17 is a neuromodulator of Caenorhabditis elegans sensory responses. Nature 542: 43-48
  29. Kinoshita N, Matsuura A, Fujiki Y. (2017) Peroxisome biogenesis: a novel inducible PEX19 splicing variant is involved in early stage of peroxisome proliferation. J. Biochem. 161: 297-308
  30. Yoshii SR, Kuma A, Akashi T, Hara T, Yamamoto A, Kurihara Y, Itakura E, Tsukamoto S, Shitara H, Eishi Y, Mizushima N. (2016) Systemic analysis of Atg5-null mice rescued from neonatal lethality of transgenic ATG5 expression in neurons. Dev. Cell 39, 116-130
  31. Itakura E, Zavodszky E, Shao S, Wohlever ML, Keenan RJ, Hegde RS. (2016) Ubiquilins chaperone and triage mitochondrial membrane proteins for degradation.  Mol. Cell 7: 21-33
  32. Lin Y, Sun Y, Weng Y, Matsuura A, Xiang L, Qi J. (2016) Parishin from Gastrodia elata extends the lifespan of yeast via regulation of Sir2/Uth1/TOR signaling pathway.  Oxid. Med. Cell. Longev. 2016: 4074690
  33. Maruyama Y, Ito T, Kodama H, Matsuura A. (2016) Availability of amino acids extends chronological lifespan by suppressing hyper-acidification of the environment in Saccharomyces cerevisiae.  PLoS ONE 11: e0151894
  34. Kira S, Kumano Y, Ukai H, Takeda E, Matsuura A, Noda T. (2016) Dynamic relocation of the Ego1/2/3 complex is regulated by Gtr1 and Gtr2. Mol. Biol. Cell 15: 382-396
  35. Klionsky DJ, Itakura E, Matsuura A, et al. (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12: 1-222
  36. Satpute-Krishnan P, Ajinkya M, Bhat S, Itakura E, Hegde RS, Lippincott-Schwartz J. (2014) ER Stress-induced clearance of misfolded GPI-anchored proteins via the secretory pathway. Cell 158: 522-533
  37. Kishi-Itakura C, Koyama-Honda I, Itakura E, Mizushima N. (2014) Ultrastructural analysis of autophagosome organization using mammalian autophagy-deficient cells. J. Cell Sci. 127: 4089-4102
  38. Chen C, Itakura E, Weber KP, Hegde RS, de Bono M. (2014) An ER complexof ODR-4 and ODR-8/Ufm1 specific protease 2 promotes GPCR maturation by a Ufm1-independent mechanism. PLoS Genetics 10: e1004082
  39. Jiang P, Nishimura T, Sakamaki Y, Itakura E, Hatta T, Natsume T, Mizushima N. (2014) The HOPS complex mediates autophagosome-lysosome fusion through interaction with syntaxin 17. Mol. Biol. Cell 25: 1327-1337
  40. Sahani MH, Itakura E, Mizushima N. (2014) Expression of the autophagy substrate SQSTM1/p62 is restored during prolonged starvation depending on transcriptional upregulation and autophagy-derived amino acids. Autophagy 10: 431-441
  41. Tomida J, Itaya A, Shigechi T, Unno J, Uchida E,Ikura M, Masuda Y, Matsuda S, Adachi J, Kobayashi M, Meetie R, Maehara Y, Yamamoto K, Kamiya K, Matsuura A, Matsuda T, Ikura T, Ishiai M, Takata M. (2013) A novel interplay between the Fanconi anemia core complex and ATR-ATRIP kinase during DNA crosslink repair. Nucl. Acids Res. 41: 6930-6941
  42. Matsui A, Kamada Y, Matsuura A. (2013) The role of autophagy in genome stability through suppression of abnormal mitosis under starvation. PLoS Genetics 9: e1003245
  43. Koyama-Honda I, Itakura E, Fujiwara TK, Mizushima N. (2013) Temporal analysis of recruitment of mammalian ATG proteins to the autophagosome formation site. Autophagy 9: 1491-1499
  44. Itakura E, Kishi-Itakura C, Mizushima N. (2012) The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151: 1256-1269
  45. Itakura E, Kishi-Itakura C, Koyama-Honda I, Mizushima N. (2012) Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy. J Cell Sci. 125: 1488-1499
  46. Xiang L, Nakamura Y, Lim YM, Yamasaki Y, Kurokawa-Nose Y, Maruyama W, Osawa T, Matsuura A, Motoyama N, Tsuda L. (2011) Tetrahydrocurcumin extends life span and inhibits the oxidative stress response by regulating the FOXO forkhead transcription factor. Aging 3: 1098-1109
  47. Matsuura A, Matsui A. (2011) Control of telomere DNA replication: genetics, molecular biology, and physiology. DNA Replication; Current Advances, pp.305-322, Intech.
  48. Itakura E, Mizushima N. (2011) p62 targeting to the autophagosome formation site requires self-oligomerization but not LC3 binding. J Cell Biol. 192: 17-27
  49. Matsui A, Matsuura A. (2010) Cell size regulation during telomere-directed senescence in Saccharomyces cerevisiae.  Biosci. Biotechnol. Biochem. 74: 195-198
  50. Itakura E, Mizushima N. (2010) Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy 6: 764-776
  51. Itakura E, Mizushima N. (2009) Atg14 and UVRAG: Mutually exclusive subunits of mammalian Beclin 1-PI3K complexes. Autophagy 5: 534-536
  52. Nakashima A, Maruki Y, Imamura Y, Kondo C, Kawamata T, Kawanishi I, Takata H, Matsuura A, Lee KS, Kikkawa U, Ohsumi Y, Yonezawa K, Kamada Y. (2008) The yeast Tor signaling pathway is involved in G2/M transition via Polo-kinase.  PLoS ONE 3: e2223
  53. Itakura E, Kishi C, Inoue K, Mizushima N. (2008) Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol. Biol. Cell 19: 5360-5372
  54. Itakura E, Sawada I, Matsuura A. (2005) Dimerization of the ATRIP protein through the coiled-coil motif and its implication to the maintenance of stalled replication forks. Mol. Biol. Cell 16: 5551-5562
  55. Takata H, Tanaka Y, Matsuura A. (2005) Late S phase-specific recruitment of Mre11 complex triggers hierarchical assembly of telomere replication proteins in Saccharomyces cerevisiae. Mol. Cell 17: 573-583
  56. Itakura E, Kajihara Takai K, Umeda K, Kimura M, Ohsumi M, Tamai K, Matsuura A. (2004) Amino-terminal domain of ATRIP contributes to intranuclear relocation of the ATR-ATRIP complex following DNA damage. FEBS Lett. 577: 289-293
  57. Itakura E, Umeda K, Sekoguchi E, Takata H, Ohsumi M, Matsuura A. (2004) ATR-dependent phosphorylation of ATRIP in response to genotoxic stress. Biochem. Biophys. Res. Commun. 323: 1197-1202
  58. Takata H, Kanoh Y, Gunge N, Shirahige K, Matsuura A. (2004) Reciprocal association of the budding yeast ATM-related proteins Tel1 and Mec1 with telomeresin vivo. Mol. Cell 14: 515-522
  59. Ono Y, Tomita K, Matsuura A, Nakagawa T, Masukata H, Uritani M, Ushimaru T, Ueno M. (2003) A novel allele of fission yeast rad11 that causes defects in DNA repair and telomere length regulation. Nucl. Acids Res. 31: 7141-7149
  60. Sekoguchi E, Sato S, Yasui A, Fukada S, Nimura Y, Aburatani H, Ikeda K, Matsuura A. (2003) A novel mitochondrial carnitine-acylcarnitine translocase induced by partial hepatectomy and fasting. J. Biol. Chem. 278: 38796-38802
  61. Kibe T, Tomita K, Matsuura A, Izawa D, Kodaira T, Ushimaru T, Uritani M, Ueno M. (2003) Fission yeast Rhp51 is required for the maintenance of telomere structure in the absence of the Ku heterodimer. Nucl. Acids Res. 31: 5054-5063
  62. Tomita K, Matsuura A, Caspari T, Carr AM, Akamatsu Y, Iwasaki H, Mizuno K, Ohta K, Uritani M, Ushimaru T, Yoshinaga K, Ueno M.  (2003) Competition between the Rad50 complex and the Ku heterodimer reveals a role for Exo1 in processing double-strand break, but not telomeres. Mol. Cell. Biol. 23: 5186-5197

原著論文(それ以前の重要なもの)

  1. Matsuura A, Naito T, Ishikawa F. (1999) Genetic control of telomere integrity in Schizosaccharomyces pombe: rad3+ and tel1+ are parts of two regulatory networks independent of the downstream protein kinases chk1+ and cds1+. Genetics 152: 1501-1512
  2. Shintani T, Mizushima N, Ogawa Y, Matsuura A, Noda T, Ohsumi Y. (1999) Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J. 18: 5234-5241
  3. Yamada M, Hayatsu N, Matsuura A, Ishikawa F. (1998) Y'-Help1, a DNA helicase encoded by the yeast subtelomeric Y' element is induced in survivor defective for telomerase. J. Biol. Chem. 273: 33360-33366
  4. Naito T, Matsuura A, Ishikawa F. (1998) Circular chromosome formation in a fission yeast mutant defective in two ATM-homologues. Nat. Genet. 20: 203-206
  5. Nakayama J, Saito M, Nakamura H, Matsuura A, Ishikawa F. (1997) TLP1: A gene encoding a protein component of mammalian telomerase is a novel member of WD repeats family. Cell 88: 875-884
  6. Matsuura A, Tsukada M, Wada Y, Ohsumi Y. (1997) Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene 192: 245-250
  7. Matsuura A, Anraku Y. (1993) Characterization of the MKS1 gene, a new negative regulator of the Ras-cAMP pathway in Saccharomyces cerevisiae. Mol. Gen. Genet. 238: 6-16
  8. Matsuura A, Treinin M, Mitsuzawa H, Kassir Y, Uno I, Simchen G. (1990) The adenylate cyclase/protein kinase cascade regulates entry into meiosis in Saccharomyces cerevisiae through the gene IME1. EMBO J. 9: 3225-3232

和文総説等

  1. 石井俊輔板倉英祐 リソソーム可視化から見えるリソソーム機能 生体の科学 73(3): 216-220 (2022)
  2. 石井俊輔板倉英祐 培養細胞のリソソーム活性測定法 実験医学別冊 新世代フローサイトメトリー活用スタンダード 羊土社 (2021)
  3. 千葉桃果板倉英祐 細胞外シャペロンClusterinによる細胞外タンパク質の分解機構 生化学 93(2): 230-233 (2021)
  4. 松浦 彰 「細胞の老化とサイズ効果」 白木賢太郎編 現代化学増刊46 「相分離生物学の全貌」 東京化学同人 (2020)
  5. 松浦 彰 酵母細胞の増殖・老化と培地成分―制限要因としての培地pH 化学と生物 55: 730-731 (2017)
  6. 松浦 彰 ノーベル医学・生理学賞:つくるだけでなく、壊すことも重要 パリティ 31: 34-35 (2016)
  7. 板倉英祐、水島 昇 マイトファゴソーム形成と不良ミトコンドリアの取込み 医学のあゆみ 250: 495-499 (2014)
  8. Ramanujan S. Hegde (翻訳板倉英祐大寺秀典) テイルアンカー型タンパク質の小胞体膜への挿入経路 細胞工学 32: 837-844 (2013)
  9. 板倉英祐、水島 昇 オートファゴソームSNAREの特殊な局在機構 細胞工学 32 863-867 (2013)
  10. 板倉英祐、水島 昇 リソソームと特異的に融合するためのオートファゴソームSNAREの発見 細胞工学 32: 326-328 (2013)
  11. 板倉英祐、水島 昇 密接ヘアピン型膜貫通ドメインを介してSNAREタンパク質がオートファゴソーム外膜に局在する ライフサイエンス新着論文レビュー 20121226日  http://first.lifesciencedb.jp/archives/6301
  12. 松浦 彰 生物学辞典 東京化学同人 (古典遺伝学に関する項目を執筆) (2010)
  13. 板倉英祐、水島 昇 オートファゴソーム形成に関るリン脂質 実験医学増刊 「脂質生物学」 20: 3279-3284 (2010)
  14. 松浦 彰 「酵母を用いた老化研究」 大澤俊彦、丸山和佳子監修 「脳内老化制御とバイオマーカー 基盤研究と食品素材」 シーエムシー出版 (2009)
  15. 岸千絵子、板倉英祐、水島 昇  オートファジーの分子機構 臨床検査 53: 1519 (2009)
  16. 板倉英祐、水島 昇  哺乳類オートファジーの制御と生理機能 実験医学 27: 2937-2942 (2009)
  17. 松浦 彰  「テロメア」 下田親、大隅良典編 「酵母のすべて」 日本シュプリンガーフェアラーグ  (2007)
  18. 松浦 彰 テロメア構造の細胞周期制御―複製後に起こるテロメア構造変化の分子機構 実験医学増刊 「染色体サイクル」 25: 175-180 (2007)
  19. 松浦 彰 テロメアの構造変換を介した染色体末端の保護と複製の統合的制御機構 遺伝別冊 「日本の遺伝学の潮流」 21: 164-166 (2007)
  20. 松浦 彰 テロメア研究の今:末端の複製は危険な橋 総研大ジャーナル 9: 11 (2006)
  21. 松浦 彰 テロメア複製の分子機構:DNA損傷修復過程との類似性とその意味 蛋白質核酸酵素  51: 162-168 (2006)
  22. 松浦 彰 テロメアクロマチンの動的制御とATMファミリー 生化学 77: 233-240 (2005)